Mineral Discoveries Using Big Data Analytics: Azimut's Exploration Edge

Jean-Marc Lulin, PhD, P.Geo.

Sprott Natural Resource Symposium July 2017

Azimut: Big Data Analytics in Exploration

Why use Big Data in Exploration?
 Key Facts about Azimut
 Big Data in Practice
 2017-2018 Perspectives

Why use Big Data in Exploration?

Declining discovery rates explained by:

1) Increasing maturity of the mining regions

- All deposits that respond well to an existing technology tend to be discovered through time in a given region
- Remaining targets are deeper, or geographically more remote

2) Exponential increase in data availability

- Increase in data generates an increase in the number of potential targets
- Nevertheless, very few tools to discriminate good targets from barren ones ("noise")
- Quantity is the enemy of quality

3) Non technical factors

- Wars, civil unrest, corruption, adverse mining regimes

Why use Big Data in Exploration?

Quality of initial targeting as the crucial step of mineral exploration

- Systematic, large-scale ("province-scale") data processing approaches are used to recognize the footprint of district-scale targets
- Predictive mineral potential modelling conducted through advanced statistical analysis
- Quebec-scale processing: 87.5 million pixels; cell size: 200 m by 200 m; up to 70 parameters per pixel; 500 GB database size
- Big Data analytics as an edge against exploration risk
- Concurrent partnership development as an edge against business risk

Sampling points

- Lake-bottom sediments (144,833)
- Stream sediments (230,224)
- Soils (75,845)
- Tills (41,041)

Geochemistry Surficial sediments Government surveys

500,000 samples over 1.5M km²

km

Data: MERN, Azimut Processing: Azimut

Key Facts about Azimut

- Core business since 2003: Big Data analytics applied to mineral exploration, and concurrent partnership development
- 30 partnership agreements since 2003, including Rio Tinto, Goldcorp, IAMGOLD, Hecla Mining and SOQUEM
- One of the top exploration portfolios in Quebec including: Eleonore South (Au), Eastmain West (Cr, PGE, Ni), Rex South (Au, Cu, W)
- Discovery of two new mineral provinces, incl. 400 mineral prospects

Key Facts about Azimut

- Company founded in 1986
- 45.4M shares outstanding never consolidated
- 53.3M shares fully diluted, incl. 4.5M warrants (\$0.45)
- Tightly held share structure: 53.8% of the shares owned by top shareholders:
 - 5.3% insiders
 - 28.0% Quebec's institutional funds (Caisse, FSTQ, Desjardins, Sidex,...)
 - 20.5% ten other individual investors
- \$2.3 M working capital, no debt (as of May 2017)

Key Facts about Azimut 2003 – 2016

Demonstrated ability to counteract share dilution

- One of the best financial leverages among project generators
- Total expenditures:
- Partner expenditures:
- AZM's expenditures:
- Cash & shares received:
- Net expenditures:

\$70.46 M (5.42 M\$/year)
\$52.30 M (4.02 M\$/year)
\$18.16 M (1.39 M\$/year)
\$10.97 M (0.84 M\$/year)
\$7.19 M (0.55 M\$)

Leverage Partners/AZM: 7.27

AZIMUT EXPLORATION

Number of years since incorporation

Choice of Quebec for three main reasons

Huge under-explored territory with favourable geology
 Outstanding database enables efficient targeting
 Safe, stable mining jurisdiction; one of the best worldwide

Big Data in Practice

High conversion rate from predictive modelling to field mineral discoveries

Key successes as main driver for current activities:Gold in the Eleonore Mining Camp, James Bay

2) Polymetallic mineralization in Far North Quebec

Gold Potential Modelling, James Bay Region

Regional	Predictive Modelling	Year	Surface Area
Initial modelli	ng and updates	2003	82,257 km ²
		2005	167,759 km²
		2009	167,759 km²
		2015	1,169,369 km ²
		2016	167,509 km ²

Database: lake bottom sediment geochemistry, gravity, magnetism

Decision: project staking by map designation in 2003 and 2004 **before** and during the discovery phase of the Eleonore deposit by Virginia (August 2004)

Results: discovery of **major gold prospects** on the Eleonore South, Opinaca A, Opinaca B and Wabamisk properties

Mineral Potential Modelling, Far North Quebec

Regional Predictive Modelling	g Year	Surface Area
Initial modelling and update	2009	1,248,000 km ²
	2015	1.167.103 km ²

Database: lake bottom sediment geochemistry, gravity, magnetism

Target types: IOCG (Cu, REE), intrusion-related gold mineralization

Decision: staking by map designation in 2009 and 2010 of four major projects

Results: outline of a **new mineral province** ("the Rex Trend") including the discovery of 5 IOCG systems and of a major intrusion-related polymetallic mineral system (Au, Ag, Te, Bi, Cu, W, Sn, fluorite, topaz)

Quebec-scale Copper footprint

Lake-bottom sediment anomaly 330 km long by 30 to 50 km wide

Under-explored, neglected giant target

Data: MERN

Azimut

Rex (Cu, Au, Ag)

> 30 km long prospective corridor with numerous high grade prospects

Rex South (Cu, Au, Ag, Te, Bi, W, Sn)

- > 18 mineralized zones
- ±60 km cumulative length of highly prospective targets

Nantais (Au-Ag-Cu-Zn)

- 3 km x 200 m mineralized corridor
- 18 km cumulative length of electromagnetic conductors

2017 - 2018 Perspectives

Projects	Budget	Funding	Planning
Eleonore South	\$3,900,000	73,4% partners (G, ER) 26.6% AZM	8,000 m of drilling stripping, prospecting
Opinaca B	\$925,000	100% Hecla Mining	2,500 m of drilling
SOQUEM	\$770,000	100% SOQUEM	Prospecting, geochemistry
Other Eastmain West Opinaca A	\$400 000	100% AZM	Prospecting, drilling

\$6 M budget, 76% funded by partners

Eleonore South

- Located 6 km from the world-class gold Eleonore Mine (8 Moz Au)
- Adjacent to and on-strike with Cheechoo discovery
- Highly prospective 4 km x 500 m gold-bearing corridor
- \$3.9 million exploration budget in 2017 including:
 - 8,000 m of diamond drilling
 - Heliborne geophysics
 - Mechanized stripping
 - Prospecting
- Azimut 26.6%, Goldcorp 36.7%, Eastmain 36.7%
- Azimut manager

Moni Prospect 49.18 g/t Au over 4.0 m

Hole ES17-64: 4.9 g/t Au over 45.0 m

Native gold with arsenopyrite. Core sample at - 204.65 m downhole

1 cm

Conclusion

- Pioneer in Big Data analytics applied to exploration
- Quebec-scale strategic positioning
- Tight share structure, financial discipline
- \$6 M budget, including > 10,000 m of drilling
- Major results expected in 2017-2018

